config_file = 'Coulomb_3_256'
figure_id = 'supp8'
config = ParticleGraphConfig.from_yaml(f'./config/{config_file}.yaml')
device = set_device("auto")Training GNN on Coulomb-like system
This script generates figures shown in Supplementary Figure 8. A GNN learns the motion rules governing a gravity-like system The simulation used to train the GNN consists of 960 particles of 16 different masses. The particles interact with each other according to gravity law.
First, we load the configuration file and set the device.
The following model is used to simulate the gravity-like system with PyTorch Geometric.
class CoulombModel(pyg.nn.MessagePassing):
"""Interaction Network as proposed in this paper:
https://proceedings.neurips.cc/paper/2016/hash/3147da8ab4a0437c15ef51a5cc7f2dc4-Abstract.html"""
"""
Compute the acceleration of charged particles as a function of their relative position according to the Coulomb law.
Inputs
----------
data : a torch_geometric.data object
Returns
-------
pred : float
the acceleration of the particles (dimension 2)
"""
def __init__(self, aggr_type=[], p=[], clamp=[], pred_limit=[], bc_dpos=[]):
super(CoulombModel, self).__init__(aggr='add') # "mean" aggregation.
self.p = p
self.clamp = clamp
self.pred_limit = pred_limit
self.bc_dpos = bc_dpos
def forward(self, data):
x, edge_index = data.x, data.edge_index
edge_index, _ = pyg_utils.remove_self_loops(edge_index)
particle_type = to_numpy(x[:, 5])
charge = self.p[particle_type]
dd_pos = self.propagate(edge_index, pos=x[:, 1:3], charge=charge[:, None])
return dd_pos
def message(self, pos_i, pos_j, charge_i, charge_j):
distance_ij = torch.sqrt(torch.sum(self.bc_dpos(pos_j - pos_i) ** 2, axis=1))
direction_ij = self.bc_dpos(pos_j - pos_i) / distance_ij[:, None]
dd_pos = - charge_i * charge_j * direction_ij / (distance_ij[:, None] ** 2)
return dd_pos
def bc_pos(x):
return torch.remainder(x, 1.0)
def bc_dpos(x):
return torch.remainder(x - 0.5, 1.0) - 0.5The data is generated with the above Pytorch Geometric model. Note two datasets are generated, one for training and one for validation. If the simulation is too large, you can decrease n_particles (multiple of 3) in “Coulomb_3_256.yaml”.#
p = torch.squeeze(torch.tensor(config.simulation.params))
model = CoulombModel(aggr_type=config.graph_model.aggr_type, p=torch.squeeze(p),
clamp=config.training.clamp, pred_limit=config.training.pred_limit, bc_dpos=bc_dpos)
generate_kwargs = dict(device=device, visualize=True, run_vizualized=0, style='color', alpha=1, erase=True, save=True, step=10)
train_kwargs = dict(device=device, erase=True)
test_kwargs = dict(device=device, visualize=True, style='color', verbose=False, best_model='20', run=0, step=20, save_velocity=True)
data_generate_particles(config, model, bc_pos, bc_dpos, **generate_kwargs)

The GNN model (see src/ParticleGraph/models/Interaction_Particle.py) is trained and tested.
Since we ship the trained model with the repository, this step can be skipped if desired.
if not os.path.exists(f'log/try_{config_file}'):
data_train(config, config_file, **train_kwargs)During training the embedding is saved in “paper_experiments/log/try_gravity_16/tmp_training/embedding” The plot of the pairwise interactions is saved in “paper_experiments/log/try_gravity_16/tmp_training/function”
The model that has been trained in the previous step is used to generate the rollouts.
data_test(config, config_file, **test_kwargs)Finally, we generate the figures that are shown in Supplementary Figure 7. The results of the GNN post-analysis are saved into ‘decomp-gnn/paper_experiments/log/try_Coulomb_3_256/results’.
config_list, epoch_list = get_figures(figure_id, device=device)


All frames can be found in “decomp-gnn/paper_experiments/log/try_Coulomb_3_256/tmp_recons/”